
Instance Specification for Loading Problems
Jelke J. van Hoorn

May 23, 2018

1 Introduction 2

2 File Formats 3
2.1 The JSON file . 3
2.2 The XML file . 3
2.3 The YAML file . 3

3 Instance Structure 8
3.1 Instance . 8
3.2 Parameters . 9
3.3 Container . 9
3.4 Loadingspace . 9
3.5 Item . 10
3.6 Constraint . 11
3.7 Objective . 11

4 Constraints 12
4.1 Maximum Weight . 12
4.2 Place All Items . 12
4.3 Support . 12

5 Objectives 13

1

1 Introduction
This document describes the structure of the instances that can be found on
the website. Instances are provided in the JSON, XML and YAML file formats,
with minimal differences across formats.

2

2 File Formats
The instances are specified in three different file formats: JSON, XML and
YAML. The structure used in all formats is the same. Basically there are just
a few types of constructs in these files:

• An object with properties, e.g., instance, container, item and load-
ingspace

• A property can be of different types:

– A value, e.g., name, length and weight
– A group of properties, e.g., info, data and size
– A list of similar objects, e.g., containers, items and loadingspaces

2.1 The JSON file
JSON is a lightweight data-interchange format. The mapping between the in-
stance structure and JSON is very straightforward:

• objects are objects
• properties are pairs
• a group of properties is an object
• a list is a list

The biggest difference with the other file formats is that the objects in a list do
not have an own name, e.g., instance, items and containers.

2.2 The XML file
XML is an eXtensible Markup Language. The mapping between the instance
structure and XML is again straightforward:

• objects are tags containing tags with different names
• properties are tags containing text
• a group of properties is a tag containing tags with different names
• a list is tag containing tags with the same name

One exception to this is the property id which is provided as attribute.

2.3 The YAML file
YAMLis a human friendly data serialization The mapping between the instance
structure and YAML is once more straightforward:

• objects are represented by a mapping

3

Listing 2.1: A small JSON example

{
"info": {

"set": "Example",
"name": "001"

},
"parameters": {

"objectives": [
{"name": "container_costs", "priority": 1, "weight": 1.0},
{"name": "fill_rate", "priority": 2, "weight": 1.0}],

"constraints": [
{"name": "maximum_weight"},
{"name": "sequence"}]

},
"data": {

"containers": [{
"id": 1,
"quantity": 9999,
"loadingspaces": [{

"id": 1,
"size": {

"length": 2000,
"width": 1000,
"height": 1000

}
}
],
"maxWeight": 24000.0

}
],
"items": [{

"id": 1,
"quantity": 3,
"size": {

"length": 500,
"width": 500,
"height": 500

},
"orientations": "LWH,WLH",
"weight": 100.0

}, {
"id": 2,
"quantity": 1,
"size": {

"length": 750,
"width": 750,
"height": 500

},
"orientations": "LWH,WLH",
"weight": 100.0

}
]

}
}

4

Listing 2.2: A small XML example

<instance>
<info>

<set>Example</set>
<name>001</name>

</info>
<parameters />
<data>

<containers>
<container id="1">

<quantity>9999</quantity>
<loadingspaces>

<loadingspace id="1">
<size>

<length>2000</length>
<width>1000</width>
<height>1000</height>

</size>
</loadingspace>

</loadingspaces>
<maxWeight>24000.0</maxWeight>

</container>
</containers>
<items>

<item id="1">
<quantity>3</quantity>
<size>

<length>500</length>
<width>500</width>
<height>500</height>

</size>
<orientations>LWH,WLH</orientations>
<weight>100.0</weight>

</item>
<item id="2">

<quantity>1</quantity>
<size>

<length>750</length>
<width>750</width>
<height>500</height>

</size>
<orientations>LWH,WLH</orientations>
<weight>100.0</weight>

</item>
</items>

</data>
</instance>

5

• properties are an entry in such mapping
• a group of properties also represented by a mapping
• a list is represented by a sequence of single entry mappings with equal

names

6

Listing 2.3: A small YAML example

instance:
info:

set: Example
name: '001'

parameters: ''
data:

containers:
- container:

id: 1
quantity: 9999
loadingspaces:
- loadingspace:

id: 1
size:

length: 2000
width: 1000
height: 1000

maxWeight: 24000.0
items:
- item:

id: 1
quantity: 3
size:

length: 500
width: 500
height: 500

orientations: LWH,WLH
weight: 100.0

- item:
id: 2
quantity: 1
size:

length: 750
width: 750
height: 500

orientations: LWH,WLH
weight: 100.0

7

3 Instance Structure
The structure of an instance has very few required elements, a lot of elements
are optional and more will be added later. Optional fields typically become
required in the presence of certain objectives or constraints, although a default
is defined for most. The order of fields within an object or group, as well as the
order within a list is flexible. It is advised to order lists by id and start with
the required fields and order the rest alphabetically. This chapter follows that
order.

3.1 Instance
info information about the instance.

required
Type: group
Fields:

set name of a set of instances
required
Type: string

name name of the instance
required
Type: string

parameters parameters of the instance, such as constraints and objectives.

required
Type: group
Fields: The details and the fields can be found in section 3.2.

data the data of the instance.

required
Type: group
Fields:

containers the containers to be filled
required
Type: list of containers. Description of a container can be found

in section 3.3.
items the items to be loaded

required
Type: list of items. Description of an item can be found in

section 3.5.

8

3.2 Parameters
constraints constraints of the instance.

optional
Type: list of constraints. Description of a constraint can be found in

section 3.6.

objectives objectives of the instance.

required
Type: list of objectives. Description of an objective can be found in

section 3.7.

3.3 Container
id id, unique within the containers.

required
Type: integer

quantity number of containers available.

required
Type: integer

loadingspaces the available spaces within a container

required
Type: list of loadingspaces. Description of a loadingspace can be found

in section 3.4.

cost total cost of usage of this container.

optional
Type: float

maxWeight maximum allowed weight to load.

optional
Type: float

3.4 Loadingspace
id id, unique within the loadingspaces

required
Type: integer

size space to load

9

required
Type: group
Fields:

length length of the space
required
Type: integer

width width of the space
required
Type: integer

height height of the space
required
Type: integer

3.5 Item
id id, unique within the items

required
Type: integer

quantity number of this item to load

required
Type: integer

size size of the item

required
Type: group
Fields:

length length of the item
required
Type: integer

width width of the item
required
Type: integer

height height of the item
required
Type: integer

orientations allowed orientations

required
Type: string, a comma-separated list describing the allowed orientations

of the items relative to the orientation (length-width-height) of the
space, containing the following possible entries:

10

• HLW (height-length-width)
• HWL (height-width-length)
• LHW (length-height-width)
• LWH (length-width-height)
• WHL (width-height-length)
• WLH (width-length-height)

weight weight of the item

optional
Type: float

group group id of the item (groups are shipped together)

optional
Type: integer

3.6 Constraint
name name, unique within the constraints. A more detailed description can

be found in section 4.

required
Type: string, should be one of: maximum_weight, ship_together, or

weight_distribution

3.7 Objective
name name of the objective. A more detailed description can be found in 5.

required
Type: string, should be one of: container_costs, fill_rate, or weight_distribution

priority objectives are compared lexicographically in increasing order with re-
spect to their priority.

required
Type: integer

weight the weighted averages of objectives with equal priority are taken with
these weights.

required
Type: float

11

4 Constraints
This section lists the constraints that are currently available, along with a de-
scription of their purpose. More constraints may be added in the future. The
optional fields noted in chapter 3 typically become required in the presence of
certain constraints or objectives. This dependency on data fields is referred to
as an ‘existence requirement’ of certain data fields. In addition to existence
requirements, constraints can have propositional requirements, which state cer-
tain propositions that the data fields should adhere to. Typically propositional
requirements state properties such as that a certain data field should be positive
or non-negative, but there is generally no limit to their genericity.

The only constraints that required for each solution are the non-overlapping
and the orientation constraints. All other constraints are only required once
they are specified.

4.1 Maximum Weight
This constraint requires the total summed weight of all placements (items, boxes,
and pallets) in all loading spaces of a certain container to not exceed a certain
threshold. The threshold value can differ per container type and is loaded from
the optional maxWeight field from the container data. When no maximum
weight is specified for a container, it will default to infinity (relaxing the maxi-
mum weight constraint for that particular container). Similarly, a weight value
is required for each item, box, and pallet, corresponding to the weight field for
the corresponding data objects. When no weight is specified for an item, box,
or pallet, it will default to zero (relaxing the constraint with respect to that
particular item, box, or pallet). This constraint can be imposed on an instance
by adding a constraint with the name: maximum_weight.

4.2 Must Place
Specific items must be placed when this constraint is active. Each pallet, box,
and item will get a place attribute attached, which indicates whether it must
occur as a placement in the solution.

4.3 Support
This constraint requires the lower surface of a placement to be supported (to
overlap with the top surfaces of other surfaces) by at least a certain percentage.
The overlap percentage can differ per item, box, and pallet and is loaded from
the optional support field from the respective data objects. When no support
field is specified, it defaults to one, corresponding to a full support requirement.
For the implementation details of support checking, refer to the “Ngoi matrix”

12

section of “Tools for Loadbuilding Benchmarks”. This constraint can be imposed
on an instance by adding a constraint with the name: support.

4.4 Scannable Item Labels
Each item has a label associated with it, indicating a face on the item where a
label is present. That specific side must be visible from the outside of the pallet
on which the item is placed.

13

5 Objectives
This section lists the objectives that are currently available, along with a de-
scription of their purpose. More objectives may be added in the future. As
said before, the optional fields from chapter 3 typically become required in the
presence of certain constraints or objectives.

14

	1 Introduction
	2 File Formats
	2.1 The JSON file
	2.2 The XML file
	2.3 The YAML file

	3 Instance Structure
	3.1 Instance
	3.2 Parameters
	3.3 Container
	3.4 Loadingspace
	3.5 Item
	3.6 Constraint
	3.7 Objective

	4 Constraints
	4.1 Maximum Weight
	4.2 Place All Items
	4.3 Support

	5 Objectives

